FIRST TERM EXAMINATION

APRIL/MAY 2018

CLASS XII

Marking Scheme - PHYSICS[FIRST ASSESSMENT][THEORY] SET 2

11	$\begin{aligned} & \text { Resultant dipole moment }=\mathrm{p} \\ & \tau=p E / 2 \end{aligned}$ Torque is clockwise when viewed from above and is perpendicular to both \vec{p} and \vec{E}	$\begin{aligned} & 1 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
12	The dipole moment per unit volume is called polarisation for linear isotropic dielectrics. $\vec{p}=\chi \vec{E}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$
13	Infinitely long charged wire produces a radial electric field. $\begin{equation*} E=\frac{\lambda}{2 \pi \varepsilon_{0} r} \tag{1} \end{equation*}$ The revolving electron experience an electrostatic force and provides necessarily centripetal force. $\begin{align*} & e E=\frac{m v^{2}}{r} \tag{2}\\ & m v^{2}=\frac{e \lambda}{2 \pi \varepsilon_{0}} \\ & K=\frac{1}{2} m v^{2}=\frac{e \lambda}{4 \pi \varepsilon_{0}} \end{align*}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$
14	(i) (a) When dipolemoment vector is parallel to electric field (b) When dipolemoment vector is antiparallel to electric field (ii) (a) electric flux remains the same (b) Electric flux becomes zero.	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$
15	Diagram and introduction Proving Net force acting on the dipole=0 Deriving $\tau=p E \sin \theta$ OR Diagram and introduction Deriving electric field strength at a distant point situated along the equatorial line of an electric dipole	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
16	(i) Diagram and introduction deriving expression for the electric field intensity at any point due to a thin, infinitely long wire (ii)	$1 / 2$ $11 / 2$ 1

17	$\begin{aligned} & \varphi_{L}=E_{L} \cdot \Delta S=\Delta S E_{L} \cdot n_{L}=E_{L} \Delta S \cos \theta=-E_{L} \Delta S \text {, since } \theta=180^{\circ} \\ & \varphi_{L}=-E_{L} a^{2} \\ & \varphi_{R}=E_{R} \cdot \Delta S=E_{R} \Delta S \cos \theta=E_{R} \Delta S \text {, since } \theta=0^{\circ} \\ & \varphi_{R}=E_{R} a^{2} \\ & \text { Net flux through the cube } \\ & =\varphi_{R}+\varphi_{L}=E_{R} a^{2}-E_{L} a^{2}=a^{2}\left(E_{R}-E_{L}\right)=a a^{2}\left[(2 a)^{1 / 2}-a^{1 / 2}\right] \\ & =1.05 \mathrm{Nm}^{2} C^{-1} \\ & q=\varphi \varepsilon_{0} . \\ & q=1.05 \times 8.854 \times 10^{-12} \mathrm{C}=9.27 \times 10^{-12} \mathrm{C} . \end{aligned}$	$1 / 2$ $1 / 2$ 1 $1 / 2+1 / 2$
18	(a) $\mathrm{qd}_{1}=\mathrm{Qd}_{2}$ $d_{1} / d_{2}=Q / q$ (b) angle between them $=0^{0}$ (ii) by connecting them with a wire, the capacitor will be discharged and the total energy stored in the capacitor is lost in the form of heat.	1 1
19	$\begin{aligned} & V(R)=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{\mathrm{Q}}{R}+\frac{q}{R}\right) \quad V(r)=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{\mathrm{Q}}{R}+\frac{q}{r}\right) \\ & \text { Potential difference }=V(r)-V(R)=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{1}{r}-\frac{1}{R}\right) \end{aligned}$ Charge will flow from inner sphere to the outer shell.	$1 / 2+1 / 2$ $1 / 2+1 / 2$ 1
20	Electric field at D due to the charge at A is, $\mathrm{E}_{\mathrm{A}}=\mathrm{kq} / \mathrm{a}^{2}$ along AD Electric field at D due to the charge at C is, $E_{C}=\mathrm{kq} / \mathrm{a}^{2}$ along CE Electric field at D due to the charge at B is, $E_{B}=k q /\left(2 a^{2}\right)$ along $B E$ Resultant of E_{A} and E_{C} is, $E_{A C}=\left[\left(E_{A}\right)^{2}+\left(E_{C}\right)^{2}\right]^{1 / 2}=\sqrt{2} \mathrm{kq} / \mathrm{a}^{2}$ along $B D$. resultant electric field at D is, $\mathrm{E}=\mathrm{E}_{\mathrm{AC}}+\mathrm{E}_{\mathrm{B}}=\sqrt{2} \mathrm{kq} / \mathrm{a}^{2}+\mathrm{kq} /\left(2 \mathrm{a}^{2}\right)=(2 \sqrt{2}+1) \mathrm{kq} /\left(2 \mathrm{a}^{2}\right) \text { along } B D .$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2+1 / 2$
21	(i) definition of electric flux and SI unit (ii) They tend to slightly move apart.	$1 / 2+1 / 2$ 1 1
22	(a) No effect on capacitance if foil is electrically neutral. (b) If foil is connected to upper plate with a conducting wire, the effective separation between plates becomes half, so capacitance is doubled. (ii) Current passes only when there is difference in potential.	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 1 \\ 1 \end{array}$

23	Definition of dielectric strength Let $A \rightarrow$ area of each plate. Let initially $C_{1}=C=\frac{\in_{0} A}{d}=C_{2}$ After inserting respective dielectric slabs: $\begin{equation*} C_{1}^{\prime}=K C \tag{i} \end{equation*}$ and $\begin{align*} C_{2}^{\prime} & =K_{1} \frac{\in_{0}(A / 2)}{d}+\frac{K_{2} \in_{0}(A / 2)}{d} \\ & =\frac{\in_{0} A}{2 d}\left(K_{1}+K_{2}\right) \\ C_{2}^{\prime} & =\frac{C}{2}\left(K_{1}+K_{2}\right) \tag{ii} \end{align*}$ From (i) and (ii) $\begin{aligned} & C_{1}^{\prime}=C_{2}^{\prime} \\ & K C=\frac{C}{2}\left(K_{1}+K_{2}\right) \end{aligned}$ $K=\frac{1}{2}\left(K_{1}+K_{2}\right)$	1 1 1
24	Electrostatic energy stored in the capacitor, $\begin{aligned} E & =\frac{1}{2} C V^{2} \\ & =\frac{1}{2} \times\left(600 \times 10^{-12}\right) \times(200)^{2} \\ & =1.2 \times 10^{-5} \mathrm{~J} \end{aligned}$ Common potential $\mathrm{V}=C_{1} V_{1} /\left(C_{1}+C_{2}\right)=100 \mathrm{~V}$ For the combination, $\mathrm{E}=1 / 2\left(C_{1}+C_{2}\right)_{\mathrm{V} 2=0.6 \times 10-\mathrm{J}}$ Energy lost=final-initial $=0.6 \times 10^{-6} \mathrm{~J}$	$1 / 2$ $1 / 2$ $1 / 2+1 / 2$ $1 / 2+1 / 2$
25	Introduction Obtaining the expression $\mathrm{U}=1 / 2 \mathrm{CV}^{2}$ $\therefore \quad C_{e q}=100 \mathrm{pF}$ Now, $Q=C_{e q} \times V=100 \times 10^{-12} \times 300=3 \times 10^{-8}$ coulomb Potential difference across $C_{4}=\frac{Q}{C_{4}}$ $\begin{aligned} & =\frac{3 \times 10^{-8}}{200 \times 10^{-12}} \\ & =1.5 \times 10^{2}=150 \mathrm{~V} \end{aligned}$ OR (i) Diagram and introduction	1/2 $11 / 2$ $11 / 2$ $1 / 2$ $1 / 2$ $1 / 2$

	Obtaining the expression $V=\frac{k p \cos \theta}{r^{2}}$ (ii) $U=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r}=9 \times 10^{9} \times \frac{7 \times(-2) \times 10^{-12}}{0.18}=-0.7 \mathrm{~J} .$ (iii) $W=U_{2}-U_{1}=0-U=0-(-0.7)=0.7 \mathrm{~J}$	1 2 $1 / 2+1 / 2$ 1
26	(i) diagram and introduction	1/2
	Proof of $E=\sigma / 2 \varepsilon_{0}$	$11 / 2$
	(ii)(a) total charge is $Q+\frac{Q}{2}=\frac{3 \mathrm{Q}}{2}$.	1/2
	$\phi=3 Q / 2 \varepsilon_{0}$	1/2
	(b)Gauss's Law-Statement	1
	(c)	
	$\mathrm{E}=\frac{\mathrm{K}\left(\frac{3 \mathrm{Q}}{2}\right)}{x^{2}} \quad \text { electric force } \mathrm{F}=(2 \mathrm{Q}) \times \mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{3 \mathrm{Q}^{2}}{x^{2}}$	$1 / 2+1 / 2$
	OR	
	(i) diagram and introduction for the electric field due to a uniformly charged thin spherical shell at a point	1/2
	To prove	
	(a) $E=\frac{k q}{r^{2}}$ (b) $E=\frac{k q}{R^{2}}$	$11 / 2$
	The surface charge density on the inner surface of smaller shell,	1
	$\sigma_{1}=-\frac{q}{4 \pi r_{1}^{2}}$	

